


3FTx (a-cobratoxin) in the venom of the front-fanged
monocled cobra (Naja kaouthia) is equally toxic towards
both endothermic and ectothermic prey [23]. To date, only
the venoms of rear-fanged snakes are known to contain
3FTxs with prey-specific effects, but it is unknown how
widely-occurring this phenomenon is among venom-produ-
cing snakes within Colubroidea. However, individual toxins
that are prey-specific towards lizards/birds or towards mam-
mals are not known to co-occur in the venom of a single
species of rear-fanged or front-fanged snake. It is hypo-
thesized that prey-specific toxins may co-occur, as some
species use many prey types, commonly showing an onto-
genetic shift in prey preference, so a two-pronged arsenal
should be an adaptive trait in these instances.

Despite the fact that rear-fanged snake venoms may con-
tain novel toxins, front-fanged snake families Elapidae and
Viperidae have remained the primary focus of venom
research, as they cause large-scale human morbidity and
mortality [24,25]. While snakebite from several species of
rear-fanged snakes (e.g.Dispholidus typus and Thelotornis
sp.) have caused human fatalities [19,26,27], most rear-
fanged venomous snakes rarely produce systemic envenoma-
tion in humans. This lack of serious effects explains to a large
extent why venoms from most rear-361.6 (is (sal69r)1imaryf3uthia53.6tev)]TJ48809(r)19.32.7 fthia53.6tev
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three lizards were injected with only 0.9% saline as controls.
Doses were adjusted to individual animal body masses, with
lethality expressed as mg venom or toxin per gram body mass
producing 50% mortality after 24 h [42]. The nonparametric
Spearman-Kärber method was used for LD50 value estimations
and determination of 95% confidence intervals [43]. All pro-
cedures were reviewed and approved by the UNC IACUC
(protocol 1504D-SM-SMLBirds-18).

(e) Prey-specific toxin evolution in rear-fanged
venomous snakes

Prey-specific monomeric 3FTxs fromO. fulgidus (C0HJD3),Boiga
dendrophila(Q06ZW0) and sulmotoxin 1 from S. sulphureus(this
study) were submitted to the Phyre2 server [44] for modelling
based on homology detection methods using server default par-
ameters. To determine 3FTx residues available for binding,

http://www.rbvi.ucsf.edu/chimera
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rodents. Unexplored venoms and venom gland transcrip-
tomes from rear-fanged snakes are probably rich sources in
which to discover functional diversification of toxin proteins.
We find that the venom of S. sulphureusis unique, as two
distinct toxins that target very different prey taxa have
evolved in this species. This is, to our knowledge, the first
instance in which this dual phenomenon has been discovered
in any snake species.

Venom gene expression within the venom gland of
S. sulphureusis similar to the 3FTx-dominated elapid-like
venom gland transcriptome of the rear-fanged brown trees-
nake B. irregularis [34,35]. However, the presence of many
fewer 3FTx transcript isoforms in S. sulphureus(16) compared
to B. irregularis (65) [35] indicates that gene duplication is
much less extensive and that S. sulphureusvenom compo-
sition is considerably less complex, and this is also
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across numerous species ofBoiga. The lack of toxic venom
components specifically targeting mammalian prey, as
demonstrated by previous studies [47], does not restrict the
trophic ecology of B. irregularisowing to the use of differing
predatory strategies when subduing prey: envenomation
without constriction to subdue bird and lizard prey (primar-
ily via irditoxin), and constriction alone to subdue
mammalian prey [47]. Spilotes sulphureus, on the other
hand, produces venom containing both lizard- and
mammal-specific toxins, and adult S. sulphureusdo not
constrict mammalian prey, but use venom and body pinning
to subdue both lizard and mammal prey (C.M. Modahl 2014,
personal observation). The efficacy of this mode of feeding is
greatly facilitated by the presence of different taxon-specific
toxins that affect both prey types. The occurrence of prey-
specific 3FTxs in the venom ofS. sulphureus, a snake species
native to the western hemisphere and evolutionarily distinct
from Asian Boiga, emphasizes the significance of diet and
predatory strategies in snake toxin evolution: both species
preferentially use bird and lizard prey, but both can also
take mammalian prey using different strategies (chemical
versus mechanical subjugation). Sulditoxin and irditoxin
therefore probably represent convergence upon a common
structural solution (heterodimerism) to produce a lizard/
bird-specific toxin, and the lack of close sequence identity
between them supports the interpretation of functional
convergence.

Relatively simple venoms with a small number of highly
abundant toxins have been suggested to be characteristic of
snakes with simple diets, such as sea snakes feeding on teleost
fisA.5 (tt)-499us371v86771Tm
(20.7 9us)0 9 pr373b322.1Tm
[(sce)a g6 (,6.6 (e5.5 (ti1 (he)26.6 (eno))a)3tox)1.2 (su)13.5 (trig)209euTJ
1.5748-40212.2 tenotar
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