
http://www.williamkhayes.com/rattlesnakes/volume.htm










499Venom composition in rattlesnakes

chemicals (analytical grade or better) were obtained from 
Sigma Chemical Co. (St. Louis, Missouri, USA).

Venoms.—Snakes were collected from a variety of 
locations in the western United States under permits from 
state and federal authorities (see acknowledgements), and 
several were received as donations or from law enforcement 
confiscations. Venoms were obtained via manual extraction 
as described previously (Mackessy, 1988), and were cen-
trifuged (to remove solids), frozen, lyophilized, and stored 
frozen until used (this material is referred to as crude ven-
om). All venoms were initially reconstituted in nanopure 
water (Millipore Ultrafiltration system; Millipore Corpora-
tion, Billerica, Massachusetts, USA). Venoms from several 
species were gifts from C. Ownby (C. h. horridus, C. d. 
terrificus) and the late S. Minton (C. polystictus, C. pusil-
lus, C. ravus). All venoms analyzed in this study were from 
individual adult snakes.

Electrophoresis.—NuPage 12% polyacrylamide gels 
(17 lane, 1.0 mm thick) were run as suggested by the man-
ufacturer (Invitrogen). Briefly, venom samples at a final 
concentration of 2.0 mg/ml were prepared in sample buf-
fer containing 15 mM DTT (final concentration). Samples 
were heated at 70ºC for 10 min, and 12 μ
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Type II venom is characterized by high to very high 
toxicity (less than 1.0 μg/g body mass, inbred mice) and 
very low to non-detectable metalloprotease activity. This 
venom type appears to be less broadly distributed among 
rattlesnakes, and because of the gross similarity to venoms 
of juvenile snakes which show ontogenetic shifts in compo-
sition (see below), it has been suggested that type II venom 
represents a paedomorphic trait (Mackessy et al., 2003). 
Species showing type II venom include C. d. terrificus, C. 
h. atricaudatus, C. l. klauberi (some), C. o. concolor, C. 
o. helleri (some), C. s. scutulatus A, C. tigris, S. c. catena-
tus, and perhaps S. c. edwardsii. Species not analyzed in 
this study which also show Type II patterns include C. d. 
collilineatus (Lennon and Kaiser, 1990) and C. vegrandis 
(Kaiser and Aird, 1987).

Note that within several well-defined species clades, 
such as C. durissus and C. oreganus, both venom types oc-
cur, suggesting that this aspect of venom composition is 
independent of phylogeny. The presence of type I or type 
II venoms, when mapped on a recent phylogenetic hypoth-
esis of relationships among rattlesnake species (Castoe and 
Parkinson, 2006), again shows no apparent trend with phy-
logeny (see Fig. 6; c.f. Werman, this volume). Even among 
different populations of the same subspecies (C. l. klauberi: 
Rael et al., 1992; C. o. helleri: French et al., 2004; C. s. 
scutulatus: Glenn and Straight, 1978, 1989; Glenn et al., 
1983), striking differences in toxicity were noted, indicat-
ing that type I or II variants can occur within a single sub-
species. At present, the functional significance of this pop-
ulation-level variation is unknown, but it may be related to 
other important aspects of the snakes’ biology (see below).

Venom ontogeny.—In addition to the trends in adult 
rattlesnake venom composition discussed above, many 
venoms, perhaps most, show some aspects of ontogenet-
ic shifts in venom composition and/or toxicity (Minton, 
1967; Fiero et al., 1972; Reid and Theakston, 1978; Lo-
monte et al., 1983; Minton and Weinstein, 1986; Mackessy, 
1988; Gutiérrez et al., 1991; Mackessy et al., 2003). Many 
of these ontogenetic patterns of variation also appear to 
follow the type I/type II dichotomy discussed above. For 
type I species, neonate and juvenile snakes produce a more 
toxic venom with low metalloprotease activity, low ser-
ine protease (thrombin-like, kallikrein-like, plasmin-like) 
activity, and often high phospholipase A2 activity. Con-
versely, venoms from adult snakes are less toxic but have 
much higher levels of metalloproteases and serine pro-
teases (Mackessy, 1993a,b). Venoms from type II species 
have been suggested to be paedomorphic because both the 
neonate/juveniles and the adults have highly toxic venoms 
with low metalloprotease activity, similar to the venoms of 
the neonate/juveniles of type I species (but not the adult 
snakes). However, venoms from type II species also show 
some aspects of venom ontogenetic shifts in composition: 
activities of several of the serine proteases (thrombin-like, 
plasmin-like) and levels of the non-enzymatic myotoxins, 
potent inducers of immobilization in rodents, are very low 

in neonate venoms and quite high in venoms from adult 
snakes (Mackessy et al., 2003). Therefore, the type I/type 
II dichotomy probably oversimplifies the actual underlying 
complex patterns of variation.

So what is the functional significance of these general 
patterns of venom composition? One difference is the differ
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