Biochemical characterization of phospholipase A₂ (trimorphin) from the venom of the Sonoran Lyre Snake Trimorphodon biscutatus lambda (family Colubridae)

Ping Huang, Stephen P. Mackessy*

Department of Biological Sciences, University of Northern Colorado, 501 20th St., CB 92, Greeley, CO 80639-0017, USA

Received 3 December 2003; accepted 23 March 2004

Available online 18 May 2004

Ab_t ac

Phospholipases A_2 (PLA₂), common venom components and bioregulatory enzymes, have been isolated and sequenced from many snake venoms, but never from the venom (Duvernoy's gland secretion) of colubrid snakes. We report for the first time the purification, biochemical characterization and partial sequence of a PLA₂ (trimorphin) from the venom of a colubrid snake, Trimorphodon biscutatus lambda (Sonoran Lyre Snake). Specific phospholipase activity of the purified PLA₂ was confirmed by enzyme assays. The molecular weight of the enzyme has been determined by SDS-PAGE and mass spectrometry to be 13,996 kDa. The sequence of 50 amino acid residues from the N-terminal has been identified and shows a high degree of sequence homology to the type IA PLA₂s, especially the Asp-49 enzymes. The Cys-11 residue, characteristic of the group IA PLA₂s, and the Ca²⁺ binding loop residues (Tyr-28, Gly-30, Gly-32, and Asp-49) are conserved. In addition, the His-48 residue, a key component of the active site, is also conserved in trimorphin. The results of phylogenetic analysis on the basis of amino acid sequence homology demonstrate that trimorphin belongs to the type IA family, and it appears to share a close evolutionary relationship with the PLA₂s from hydrophiine elapid snakes (sea snakes and Australian venomous snakes). © 2004 Elsevier Ltd. All rights reserved.

Keywords: Amino acid sequence; Catalytic site residue; Calcium binding site residues; Colubrid snake; Duvernoy's gland; Elapidae; Enzyme; Evolution; Mass spectrometry; Phospholipase A₂; Phylogenetic analysis

1. I t - d c --

Snake venoms are complex mixtures of components with a diverse array of actions both on prey and human victims, and they are generally rich sources of water-soluble enzymes and polypeptides. Among these enzymes, the secreted phospholipases A_2 are widely distributed among various species, and those from the venoms of reptiles and the pancreatic tissues of mammals are particularly well characterized (Danse et al., 1997). Phospholipases A_2 are esterolytic enzymes which hydrolyze acyl-ester bonds at the sn-2 position of 1,2-diacyl-3-sn-phosphoglycerides and release fatty acids and the corresponding 1-acyl lysophospholipids (van Deenen et al., 1963; Kini, 1997). Especially noteworthy are various types of phospholipase

(35 μ g protein per lane; T. biscutatus) were also reduced. Gels were imaged using a Kodak DC-120 digital camera.

2.7. Reduction and alkylation

Purified trimorphin (approx. 250 μ g) was dissolved in 1.0 ml of 0.1 M Tris buffer, pH 7.5, containing 1% SDS and 0.1 M dithiothreitol (DTT). The mixture was boiled for 3 min and then incubated under nitrogen for 1 h at room temperature. An aliquot of 40 μ l of a freshly prepared 100 mM stock solution of 4-vinylpyridine was added to the solution and followed by incubation overnight under nitrogen at room temperature. The resultant mixture was transferred into washed dialysis tubing (3.5 kDa cutoff) and dialyzed against 1.0 l of 0.1% SDS for three changes.

2.8. Amino acid sequence analysis

The N-terminal amino acid sequence (first 50 residues) of the S-pyridylated PLA_2 enzyme was determined by automated Edman degradation using an Applied BioSystems 473a pulsed liquid-phase sequencer at the Protein

3.2. Purification of trimorphin

Like the venoms of most other snakes, the venom of T. biscutatus is a mixture of pharmacologically active proteins and polypeptides, including metalloproteases and phospholipase A_2 . In order to isolate and purify PL;eh(26 02e)]TJ

3.3. Effect of EDTA and pH on enzyme activity

At concentrations above 50 μ M, the metal ion chelator EDTA completely inhibited PLA₂ activity, demonstrating the requirement of divalent cation for activity (likely Ca²⁺, as for other PLA₂s); the IC₅₀ is approximately 15 μ M. Fig. 5 presents the pH-activity profile of trimorphin. The enzyme shows a broad pH optimum (7.0–9.0) with an apparent peak of activity at pH 7.5. No enzymatic activity was detected at

loss of enzymatic activity in equine pancreatic PLA_2 , even though the binding of monomeric substrate and cofactor Ca^{2+} to the active site remains unaffected (Verheij et al., 1980). Furthermore, a majority of residues involved in the formation of a hydrophobic channel (Leu-2, Phe-5, and Ile-9) (Scott et al., 1990b) are also conserved in trimorphin with the exception of Trp-19, which has been substituted (somewhat conservatively) by Leu-19.

3.5. Evolutionary relationships

An analysis of sequence relatedness was conducted by comparing the N-terminal amino acid sequence of trimor-

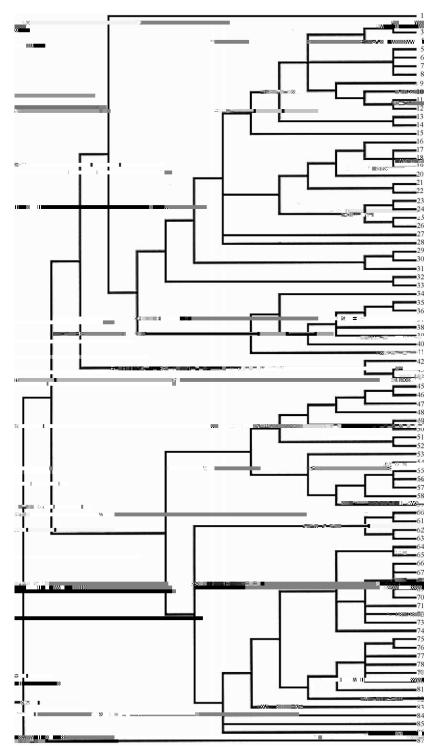


Fig. 6. Cladogram of relationship between T. biscutatus \mbox{PLA}_2 (trimorphin-1) and other snake venom group IA \mbox{PLA}_2

This work was partially supported by grant GM52665-01 from the National Institutes of Health, National Institute of General Medical Sciences (to SPM) and by the UNC Sponsored Programs and Academic Research Center. Snakes were donated by B. Tomberlin and W. Sherbrooke, and their help is greatly appreciated.

ed A Α

Phospholipase A2 toxins and snake species included in cladistic analysis of PLA₂ relationships (Fig. 6). Sequences are available in Danse et al. (1997) and via the National Center for Biotechnology Information's NR Protein Database (FASTA programs: Pearson and Lipman, 1988)

Number	Snake species	Toxin name
	Trimorphodon biscutatus	Trimorphin
;	Enhydrina schistosa	Myotoxin
	Enhydrina schistosa	Myotoxin homolog
	Hydrophis lapemoides	PLA ₂
	Notechis scutatus scutatus	Notechis II-5
	Notechis scutatus scutatus	Notexin Np
	Notechis scutatus scutatus	Notexin isoform Ns
	Notechis scutatus scutatus	Scutoxin
	Pseudonaja textilis	Textilotoxin A
	3	subunit
0	Laticauda semifasciata	Ls PLA I
1	Laticauda semifasciata	Ls PLA III
2	Laticauda semifasciata	Ls PLA IV
3	Notechis scutatus scutatus	PLA ₂ 11'2
4	Notechis scutatus scutatus	Notechis II-1
5	Australaps superba	Platelet aggregation
		inhibitor
6	Aipysurus laevis	PLA ₂ -like
7	Pseudechis australis	Pa-13
8	Pseudechis australis	Pa-15a
9	Pseudechis australis	Pa-15b
20	Laticauda colubrina	Lc-PLA-II
1	Laticauda laticauda	PLA ₂ -like
22	Laticauda colubrina	Lc-PLA-I
23	Pseudechis australis	Pa-1Ga
24	Pseudechis australis	Pa-1Gb
25	Pseudechis australis	Pa-3a
26	Pseudechis australis	Pa-3b
27	Pseudechis papuanus	PPV PLA ₂ , neutral
28	Pseudechis australis	Pa-10a
29	Pseudechis australis	Pa-11
30	Pseudechis australis	Pa-12a
30 31	Pseudechis australis	Pa-12c
32	Pseudechis australis	Pa-5a
33	Pseudechis australis	Pa-5b

Number	Snake species	Toxin name
34	Pseudechis porphyriacus	Pseudexin A
35	Bungarus fasciatus	Toxin Va cardiotoxin
36	Bungarus fasciatus	Toxin Vb-2
37	Bungarus fasciatus	cardiotoxin Toxin V-I
38	Bungarus fasciatus	cardiotoxin Toxin X-I basic
39	Bungarus fasciatus	Toxin II-2 basic
40	Bungarus fasciatus	Toxin III neutral
41	Bungarus fasciatus	Nonenzymatic acidic mutant PLA2
42	Pseudonaja textilis	Textilotoxin C subunit
43	Pseudechis porphyriacus	Pseudexin B
44	Pseudechis porphyriacus	Pseudexin C
45	Oxyuranus scutellatus scutellatus	Taipoxin α chain
46	Pseudonaja textilis	Textilotoxin B subunit
47	Oxyuranus scutellatus scutellatus	Taipoxin $\beta 1$ chain
48	Oxyuranus scutellatus scutellatus	Taicatoxin PLA ₂ 1.6.4.2
49	Oxyuranus scutellatus scutellatus	Taicatoxin PLA_2 1.6.4.3
50	Oxyuranus scutellatus scutellatus	OS_2
51	Notechis scutatus scutatus	PLA ₂ 24'2
52	Pseudechis australis	Pa-9c
53	Bungarus multicinctus	Phospholipase A
54	Bungarus multicinctus	β-bungarotoxin, A1 chain
55	Bungarus multicinctus	β-bungarotoxin, A2 chain
56	Bungarus multicinctus	β-bungarotoxin, A2 chain variant
57	Bungarus multicinctus	β-bungarotoxin, A3 chain
58	Bungarus multicinctus	P11 PLA ₂ isoform
59	Bungarus multicinctus	B. multicinctus A4 chain
60	Maticora bivirgata	PLA ₂ I
61	Maticora bivirgata	PLA ₂ II
62	Micrurus nigrocinctus	PLA 2.5
63	Micrurus nigrocinctus	PLA 3.6
64	Micrurus nigrocinctus	PLA 1.3
65	Aspidelaps scutatus	CM-II
66	Micrurus corallinus	PLA ₂ -V2
67	Naja naja atra	Acidic PLA
68	Naja naja atra	Acidic PLA, isoform

Number	Snake species	Toxin name
69	Naja naja kaouthia	CM-II
70	Naja naja sputatrix	PLA ₂ clone 1
71	Naja naja kaouthia	CM-III
72	Naja naja sputatrix	PLA ₂ clone 2
73	Naja naja sputatrix	PLA ₂ clone 3
74	Naja melanoleuca	DE-II
75	Naja mossambica mossambica	CM-I
76	Naja mossambica mossambica	CM-II
77	Naja mossambica mossambica	CM-III
78	Naja mossambica pallida	III
79	Naja nigricollis	Basic PLA
80	Naja nigricollis	Nigexin, cytotoxin
81	Naja melanoleuca	DE-I
82	Naja melanoleuca	DE-III
83	Hemachatus hemachatus	DE-I
84	Naja naja naja	Acidic
85	Naja naja naja	Acidic PLA2
86	Naja naja oxiana	Phospholipase A E3
87	Crotalus scutulatus scutulatus	Mojave toxin-b, basic subunit

Refe e ce

·

<sup>Bradford, M.M., 1976. A rapid and sensitive method for the quantitatiion of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.
Chang, C.C., 1985. Neurotoxins with PLA₂ activity in snake</sup>

- Scott, D.L., White, S.P., Otwinowski, Z., Yuan, W., Gelb, M.H., Sigler, P.B., 1990b. Interfacial catalysis: the mechanism of phospholipase A₂. Science 250, 1541–1546.
- Serrano, S.M., Reichl, A.P., Mentele, R., Auerswald, E.A., Santoro, M.L., Sampaio, C.A., Camargo, A.C., Assakura, M.T., 1999. A novel phospholipase A2, BJ-PLA2, from the venom of the snake Bothrops jararaca: purification, primary structure analysis, and its characterization as a plateletaggregation-inhibiting factor. Arch. Biochem. Biophys. 367, 26-32.
- Slowinski, J.B., Knight, A., Rooney, A.P., 1997. Inferring species trees from gene trees: a phylogenetic analysis of the Elapidae (Serpentes) based on the amino acid sequences of venom proteins. Mol. Phylogenet. Evol. 8, 349–362.
- Tamiya, N., Yagi, T., 1985. Non-divergence theory of evolution: sequence comparison of some proteins from snakes and bacteria. J. Biochem. 98(2), 289-303.
- Tsai, I.H., 1997. Phospholipases A_2 of Asian snake venoms. J. Toxicol. Toxin Rev. 16, 79–113.
- Tu, A.T., Passey, R.B., Toom, P.M., 1970. Isolation and characterization of phospholipase A from sea snake